ends of such a communication link shall not exceed 25 microseconds for any two consecutive transmissions. Transmissions shall be continuous in every time and spectrum window during the frame period defined for the device. (f) The frequency stability of the carrier frequency of the intentional radiator shall be maintained within ±10 ppm over 1 hour or the interval between channel access monitoring, whichever is shorter. The frequency stability shall be maintained over a temperature variation of -20° to + 50 °C at normal supply voltage, and over a variation in the primary supply voltage of 85 percent to 115 percent of the rated supply voltage at a temperature of 20 °C. For equipment that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage. [58 FR 59180, Nov. 8, 1993; 59 FR 15269, Mar. 31, 1994. Redesignated at 59 FR 32852, June 24, 1994, as amended at 59 FR 32853, June 24, 1994; 59 FR 40835, Aug. 10, 1994; 59 FR 55373, Nov. 7, 1994; 60 FR 3303, Jan. 13, 1995; 69 FR 62621, Oct. 27, 2004; 77 FR 43013, July 23, 2012] # Subpart E—Unlicensed National Information Infrastructure Devices ## § 15.401 Scope. This subpart sets out the regulations for unlicensed National Information Infrastructure (U-NII) devices operating in the 5.15–5.35 GHz, 5.47–5.725 GHz and 5.725–5.85 GHz bands. [79 FR 24579, May 1, 2014] ## § 15.403 Definitions. - (a) Access Point (AP). A U-NII transceiver that operates either as a bridge in a peer-to-peer connection or as a connector between the wired and wireless segments of the network. - (b) Available Channel. A radio channel on which a Channel Availability Check has not identified the presence of a radar. - (c) Average Symbol Envelope Power. The average symbol envelope power is the average, taken over all symbols in the signaling alphabet, of the envelope power for each symbol. - (d) Channel Availability Check. A check during which the U-NII device listens on a particular radio channel to identify whether there is a radar operating on that radio channel. - (e) Channel Move Time. The time needed by a U-NII device to cease all transmissions on the current channel upon detection of a radar signal above the DFS detection threshold. - (f) Digital modulation. The process by which the characteristics of a carrier wave are varied among a set of predetermined discrete values in accordance with a digital modulating function as specified in document ANSI C63.17–1998. - (g) Dynamic Frequency Selection (DFS) is a mechanism that dynamically detects signals from other systems and avoids co-channel operation with these systems, notably radar systems. - (h) DFS Detection Threshold. The required detection level defined by detecting a received signal strength (RSS) that is greater than a threshold specified, within the U-NII device channel bandwidth. - (i) Emission bandwidth. For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement. - (j) In-Service Monitoring. A mechanism to check a channel in use by the U-NII device for the presence of a radar. - (k) Non-Occupancy Period. The required period in which, once a channel has been recognized as containing a radar signal by a U-NII device, the channel will not be selected as an available channel. - (1) Operating Channel. Once a U-NII device starts to operate on an Available Channel then that channel becomes the Operating Channel. #### § 15.405 - (m) Maximum Power Spectral Density. The maximum power spectral density is the maximum power spectral density, within the specified measurement bandwidth, within the U-NII device operating band. - (n) Maximum Conducted Output Power. The total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. - (o) Power Spectral Density. The power spectral density is the total energy output per unit bandwidth from a pulse or sequence of pulses for which the transmit power is at its maximum level, divided by the total duration of the pulses. This total time does not include the time between pulses during which the transmit power is off or below its maximum level. - (p) *Pulse*. A pulse is a continuous transmission of a sequence of modulation symbols, during which the average symbol envelope power is constant. - (q) RLAN. Radio Local Area Network. - (r) Transmit Power Control (TPC). A feature that enables a U-NII device to dynamically switch between several transmission power levels in the data transmission process. - (s) *U-NII devices*. Intentional radiators operating in the frequency bands 5.15–5.35 GHz and 5.470–5.85 GHz that use wideband digital modulation techniques and provide a wide array of high data rate mobile and fixed communications for individuals, businesses, and institutions. [69 FR 2687, Jan. 20, 2004, as amended at 69 FR 54036, Sept. 7, 2004; 79 FR 24579, May 1, 2014] # § 15.405 Cross reference. (a) The provisions of subparts A, B, and C of this part apply to unlicensed U-NII devices, except where specific provisions are contained in subpart E. Manufacturers should note that this includes the provisions of §§15.203 and 15.205. (b) The requirements of subpart E apply only to the radio transmitter contained in the U-NII device. Other aspects of the operation of a U-NII device may be subject to requirements contained elsewhere in this chapter. In particular, a U-NII device that includes digital circuitry not directly associated with the radio transmitter also is subject to the requirements for unintentional radiators in subpart B. [63 FR 40835, July 31, 1998] # § 15.407 General technical requirements. - (a) Power limits: - (1) For the band 5.15-5.25 GHz. - (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). - (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. - (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-tomultipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. (2) For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Note to paragraph (a)(3): The Commission strongly recommends that parties employing U–NII devices to provide critical communications services should determine if there are any nearby Government radar systems that could affect their operation. - (4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. - (5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725–5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15–5.25 GHz, 5.25–5.35 GHz, and the 5.47–5.725 GHz bands are made over a #### § 15.407 bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth. - (b) *Undesirable emission limits*. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: - (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. - (2) For transmitters operating in the 5.25–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of $-27~\mathrm{dBm/MHz}$. - (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. - (4) For transmitters operating in the 5.725–5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz. - (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz - (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207. - (7) The provisions of §15.205 apply to intentional radiators operating under this section. - (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits. - (c) The device shall automatically discontinue transmission in case of either absence of information to trans- mit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met. - (d) [Reserved] - (e) Within the $5.725-5.85~\mathrm{GHz}$ band, the minimum $6~\mathrm{dB}$ bandwidth of U-NII devices shall be at least $500~\mathrm{kHz}.$ - (f) U-NII devices are subject to the radio frequency radiation exposure requirements specified in §1.1307(b), §2.1091 and §2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request. - (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual. - (h) Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS). - (1) Transmit power control (TPC). U-NII devices operating in the 5.25–5.35 GHz band and the 5.47–5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW. - (2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25–5.35 GHz and 5.47–5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems. Operators shall only use equipment with a DFS mechanism that is turned on when operating in these bands. The device must sense for radar signals at 100 percent of its emission bandwidth. The minimum DFS detection threshold for devices with a maximum e.i.r.p. of 200 mW to 1 W is -64 dBm. For devices that operate with less than 200 mW e.i.r.p. and a power spectral density of less than 10 dBm in a 1 MHz band, the minimum detection threshold is -62 dBm. The detection threshold is the received power averaged over 1 microsecond referenced to a 0 dBi antenna. For the initial channel setting, the manufacturers shall be permitted to provide for either random channel selection or manual channel selection. - (i) Operational Modes. The DFS requirement applies to the following operational modes: - (A) The requirement for channel availability check time applies in the master operational mode. - (B) The requirement for channel move time applies in both the master and slave operational modes. - (ii) Channel Availability Check Time. A U-NII device shall check if there is a radar system already operating on the channel before it can initiate a transmission on a channel and when it has to move to a new channel. The U-NII device may start using the channel if no radar signal with a power level greater than the interference threshold values listed in paragraph (h)(2) of this section, is detected within 60 seconds. - (iii) Channel Move Time. After a radar's presence is detected, all transmissions shall cease on the operating channel within 10 seconds. Transmissions during this period shall consist of normal traffic for a maximum of 200 ms after detection of the radar signal. In addition, intermittent management and control signals can be sent during the remaining time to facilitate vacating the operating channel. - (iv) Non-occupancy Period. A channel that has been flagged as containing a radar system, either by a channel availability check or in-service monitoring, is subject to a non-occupancy period of at least 30 minutes. The non-occupancy period starts at the time when the radar system is detected. - (i) Device Security. All U-NII devices must contain security features to pro- tect against modification of software by unauthorized parties. - (1) Manufacturers must implement security features in any digitally modulated devices capable of operating in any of the U-NII bands, so that third parties are not able to reprogram the device to operate outside the parameters for which the device was certified. The software must prevent the user from operating the transmitter with operating frequencies, output power, modulation types or other radio frequency parameters outside those that were approved for the device. Manufacturers may use means including, but not limited to the use of a private network that allows only authenticated users to download software, electronic signatures in software or coding in hardware that is decoded by software to verify that new software can be legally loaded into a device to meet these requirements and must describe the methods in their application for equipment authorization. - (2) Manufacturers must take steps to ensure that DFS functionality cannot be disabled by the operator of the U-NII device. - (j) Operator Filing Requirement: Before deploying an aggregate total of more than one thousand outdoor access points within the 5.15-5.25 GHz band, parties must submit a letter to the Commission acknowledging that. should harmful interference to licensed services in this band occur, they will be required to take corrective action. Corrective actions may include reducing power, turning off devices, changing frequency bands, and/or further reducing power radiated in the vertical direction. This material shall be submitted to Laboratory Division, Office of Engineering and Technology, Federal Communications Commission, 7435 Oakland Mills Road, Columbia, MD 21046. Attn: U-NII Coordination, or via Web site at https://www.fcc.gov/labhelp with the SUBJECT LINE: "U-NII-1 Filing". [63 FR 40836, July 31, 1998, as amended at 69 FR 2687, Jan. 20, 2004; 69 FR 54036, Sept. 7, 2004; 79 FR 24579, May 1, 2014; 79 FR 56988, Sept. 24, 2014; 79 FR 76903, Dec. 23, 2014]